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Abstract

The spatial development of an initially linear vorticity-mode instability on a compress-

ible flat-plate boundary layer is considered. The analysis is done in the framework of the

hypersonic limit where the free-stream Much number M --+ co. Nonlinearity is shown to

become important locally, in a thin critical layer, when _, the deviation of the phase speed

becomes o (M-'_) and the magnitude of the pressure fluctuations becomesfrom unity,

O (_] MS). The unsteady flow outside the critical layer takes the form of a linear in-

stability wave but with its amplitude completely determined by the nonlinear flow within

the critical layer. The coupled set of equations which govern the critical-layer dynamics

reflect a balance between spatial-evolution, (linear and nonlinear) convection and non-

linear vorticity-generation terms. The numerical solution to these equations shows that

nonlinear effects produce a dramatic reduction in the instability-wave amplitude.

1. Introduction

The theory of compressible boundary-layer instabilities has received renewed attention

in recent years primarily due to the current interest in hypersonic flight. The foundations

of the linear theory were provided by Lees & Lin (1946) who showed that compressible

boundary layers are often inviscidly unstable due to the presence of a generalized inflection

point. Indeed, at sufficiently large Much numbers, it is believed that laminar boundary-layer



instabilities are predominantly inviscid.

A comprehensive account of the linear inviscid stability theory is given by Mack (1984,1987).

There it is shown that, in addition to the single inflectional mode present at all non-zero Mach

numbers, the l_yleigh problem admits a countably infinite set of solutions whenever there

is a region of supersonic flow relative to the phase speed of the disturbance. An example of

this multiplicity of solutions is shown in figure 1 where the spatial growth rate -ai is plotted

against the frequency S for an insulated flat plate at a free-stream Mach number M = 10.

In this figure, Mack's (1987) method of identifying families of eigensolutions associated with

the neutral sonic modes is used. The first family, denoted E_, starts from the upstream

running Mach wave at S = 0 where c = 1 - 1/M while the other families, denoted Ed_, start

from the successive downstream running Mach waves at S = Sd,_ where c = 1 4- 1/M. Only

solutions for cr _< 1 are presented in the figure so the _dn curves begin at the frequencies

Sin corresponding to the non-inflectional neutral points with c = 1. The Edn curves are

shown only for a small range of S, were this range extended, the damping rate along each

curve would, in general, reach a maximum and then decrease toward zero. The other neutral

frequencies shown in figure 1 are denoted by Ssn and correspond to the generalized inflection

point. In this paper, the convention of referring to the E_ family as the vorticity mode and

the Ed,_ families as the acoustic modes (with the first acoustic mode corresponding to EdX,

the second to Ed2 and so on) will be followed.

Single-frequency excitation of compressible boundary layers gives rise to spatially grow-

ing instability waves. For excitation amplitudes and Reynolds numbers sufficiently small

and large respectively, the initial evolution of such disturbances can be described by weakly

nonparallel linear stability theory. According to this theory, the instability wave continues



to growasit propagatesdownstreamand,owingto thegrowthof themeanboundarylayer,

the localStrouhalnumberincreases.Thelatter resultfollowsfrom thedefinitionof the local

Strouhalnumberas5F*/Uoowhere5is a measureof the localboundary-layerthickness,F*

is the constant forcing angular frequency and Uoo is the constant free-stream velocity. For

simplicity, the mean flows considered here are assumed to be self-similar so the local stability

properties can be found from eigenvalue diagrams such as figure 1 where S is now interpreted

as the local Strouhal number.

As the local Strouhal number increases towards its neutral value, nonlinearity will come

into play locally, in a thin critical layer, to balance the resulting singularity in the Rayleigh

equation provided the Reynolds number is sufficiently large (see Goldstein & Leib 1988).

This nonlinear interaction can be described by an analysis completely parallel to that given,

for compressible shear layers, by Goldstein & Leib (1989) and Leib (1991). For the shear

layers, the near-neutral region is the first region in which nonlinearity enters the development

of the unsteady flow provided the instability-wave amplitude remains small. However, for

the boundary layers of interest here, nonlinearity can become important away from the near-

neutral region while disturbance is still small due to the interplay between the vorticity

and acoustic modes. This was first noted in the large Mach number analysis of the Rayleigh

problem done by Blackaby, Cowley _ Hall (1992, hereinafter referred to as BCH). They show

that near each non-inflectional neutral frequency $1,_ the vorticity mode has a well-defined

critical layer and consequently, may be preferentially affected by nonlinearity. Referring

to figure 1, this means that if a vorticity mode, with a dimensionless frequency 0.1 say, is

excited, nonlinearity can become important as the local Strouhal number approaches either

$12 or $13 (far from the neutral Strouhal number S_4) while the instability-wave amplitude



is still small. It is this possibilitythat will beinvestigatedin the presentwork.

As in thecompressible-shear-flowanalysisof Goldstein& Leib (1989)andLeib (1991)

andtheincompressibleboundaryandshearlayeranalysesof GoldsteinDurbin& Leib (1987),

Goldstein& Leib (1988)and Goldstein& Hultgren (1988),nonlinearitycomesinto play

locally,in athin critical layer,to balanceasingularityin theRayleighequationonly nowthe

singularityarisesasthe localStrouhalnumberapproachesa non-inflectionalneutralvalue.

The unsteadyflow outsidethe critical layer remainsessentiallylinearbut with a slowly

varyingamplitudethat is completelydeterminedby the nonlineardynamicsin thecritical

layer. The appropriatescalingbetweenthelocal instability-waveamplitudeand frequency

for whichthis nonlinearinteractiontakesplaceisdeterminedby requiringthat thenonlinear

problemmatchonto thelinearsmall-growth-ratesolutionfar upstream.This ensuresthat

thenonlinearsolutionrepresentsthenaturaldownstreamcontinuationof theupstreamlinear

solution.

To obtainadescriptionof thisnonlinearinteractionfroma first principlesanalysis,it is

necessaryto characterize,in somerationalway,therelativesizesof thelineargrowthrateand

wavenumber.This characterizationis mosteasilyarrivedat by consideringthe problemin

thehypersoniclimit wherethefree-streamMachnumberM --4 co. The relevant asymptotic

solutions to the Rayleigh problem, for a fluid obeying Chapman's viscosity law, are then

given by Cowley gz Hall (1990) and Smith & Brown (1990). The former reference contains an

analysis of the small-wavenumber acoustic modes while the latter gives order-one wavenumber

solutions for the vorticity mode as well as the acoustic modes. A detailed analysis of both

mode types is given by BCH for a fluid satisfying the more accurate Sutherland viscosity law

and Grubin & Trigub (1992a,b) present solutions for a fluid with a Prandtl number less than



unity anda powerlaw viscosity-temperaturerelation.

Thenonlinearinteractionconsideredhereis inherentlya largeMachnumberphenomenon

becauseit requiresthat thefirst few$1_ lie within the frequency range of the unstable vorticity

mode (c.f. figure 3). But, from a practical stand point, the Mach number should not be too

large since as it increases the frequency of the most rapidly growing vorticity-mode solution

(and consequently, the excitation frequency of most interest) moves beyond the range in

which the interplay with the merged acoustic modes produces a well-defined critical layer

(see BCH). For an insulated flat plate, these considerations restrict the Mach number to

values between about 8 and 20 which, nevertheless, is a range of technological interest. BCH

indicate that their asymptotic solution for the vorticity mode is not in overall agreement

with the exact solution until M > 20. It is felt that the nonlinear evolution equations to be

derived here will remain valid in the more moderate range, 8 < M < 20, for the following

reasons. The present analysis involves only the linear solutions for the vorticity mode near

the non-inflectional neutral frequencies Sx= and these solutions are in, at least, qualitative

agreement with the exact solutions at lower Mach numbers. Also, the nonlinear interaction

is local in nature and, to a large extent, its occurrence depends only on the requirement that

the linear growth rate be small compared to the wavenumber which is certainly the case in

the Math number range of interest.

Goldstein & Wundrow (lg90) showed that the aforementioned nonlinear mechanism

causes a breakdown in the linear solution of Cowley & Hall (1990) when the amplitude of

the pressure fluctuations in the main boundary layer becomes O (M -4 In -1 M2). Although

presented in the context of acoustic modes, these analyses also apply to the vorticity mode



in the vicinity of the non-inflectional neutral frequencies 1. The solutions to the nonlinear

critical-layer problem derived in Goldstein g_ Wundrow (1990) depend on a single free para-

meter, r, which is defined as the ratio of the logarithmic derivative of the mean temperature

to the logarithmic derivative of the mean vorticity evaluated at the transverse position where

the phase speed of the disturbance equals the mean flow speed. This parameter is between

0 and 1 on the acoustic-mode branch of the linear solution and is greater than 1 on the

vorticity-mode branch. The authors only presented numerical results for values of r less than

1, however these results clearly show the significance of nonlinear vorticity generation due to

compressible effects. In particular, for values of r near 1 they found that these effects come

into play first to produce a dramatic increase in the instability-wave growth rate.

The purpose of the present work is to determine how critical-layer nonlinearity affects

the spatial development of an initially linear vorticity mode as it nears a non-inflectional

neutral frequency. This objective could be achieved by computing solutions to the evolution

equations derived in Goldstein & Wundrow (1990) for values of r greater than 1, however

two changes will be made to the derivation of these equations which will greatly broaden

their range of applicability. First, Sutherland's law will be used to model the variation of

the viscosity with temperature instead of Chapman's law since, as pointed out by BCH, the

former law is better suited for the large temperature variations encountered at hypersonic

speeds; and second, the frequency range over which the nonlinear analysis applies will be

enlarged to capture the maximum possible deviation from Sin for which the linear vorticity

1The approximate linear dispersion relation obtained in Cowley & Hall (1990) and Goldstein & Wundrow

(1990) has two branches for which the growth rate ispositive. One branch corresponds to the amplified

acoustic modes and the other corresponds to those amplified vorticity-mode solutionslying near the non-

inflectionalneutral frequencies $I.. This issue isexplored in some detailby BCH.



mode has a well-defined critical layer.

In the present analysis_ nonlinearity first becomes important when the amplitude of the

pressure fluctuations in the main part of the boundary layer becomes O (as M 2) where a is

a measure of the deviation of the local phase speed from unity and must be o (M-_). The

coupled set of nonlinear equations that determine the critical-layer dynamics are a special

case of those obtained by Goldstein & Wundrow (1990) and must be solved numerically. The

computations show that, rather than enhancing the growth rate as it did in Goldstein _ Wun-

drow (1990)_ nonlinearity now causes a dramatic reduction in the instability-wave amplitude

- presumably because the nonlinear vorticity-generation (or Bjerknes) term appearing in the

final critical-layer vorticity equation changes sign relative to the linear inhomogeneous term

when solutions for the vorticity mode are considered.

The overall plan of the paper is as follows. The problem is formulated in §2, where the

nonlinear flow is shown to gradually evolve from the strictly linear large M solution. The

unsteady flow outside the critical layer is a linear inviscid perturbation about the hypersonic

(i.e. M >> 1), non-interactive, boundary-layer flow analyzed in BCH and the solution for this

flow is worked out in §3. In §4, a comparison between the asymptotic and exact solutions to

the linear dispersion relation is made. The asymptotic solutions obtained in §§2 and 3 are

then used to formulate the relevant critical-layer problem in §5 and the numerical solution to

this problem is presented and discussed in §6.

2. Formulation

As in Goldstein & Wundrow (1990), concern here is with a nearly-inviscid, compressible,

boundary-layer flow of a perfect gas over a flat plate. The flow parameters in the free stream



are used as referencequantitiesand are generallydenoted by thesubscriptoo. The reference

length6o istaken to be some suitableboundary-layerthickness(e.g.momentum thickness)in

the regionwhere nonlinearityfirstbecomes important. The steadyflowisthen characterized

by theMa_h number

and the Reynolds number

Uoo

M -- , (2.1)
aoo

1 Uo, So
R - , (2.2)

1+C uoo

where aoo = _ is the speed of sound in the free stream, C _ 110.4/Too is the Sutherland

constant for air temperatures measured in degrees Kelvin, u is the kinematic viscosity, 7 is the

isentropic exponent of the gas and _ is the gas constant. When numerical values are needed,

7 is taken to be 1.4 and C is taken to be 0.5 which corresponds to a typical free-stream

temperature in the upper atmosphere.

The Reynolds number is assumed to be large enough so that the unsteady motion is

essentially inviscid and unaffected by mean boundary-layer growth over the length scale on

which the nonlinear interaction takes place (see (5.13) for a more precise restriction). To

the required level of approximation, the mean pressure is then constant and the local mean

velocity and temperature are given by

{uo,vo}= (2.3)

and

0o = T(r/), (2.4)

respectively, where _/is the Dorodnitsyn-Howarth variable (Stewartson 1964) which is related



to the transverse coordinate y by

Y-/0' T(s)ds. (2.5)

The localmean velocityand temperature fieldsare,of course,dependent on the con-

stitutiverelationsused to describethefluid.The simplestfluidto considerfrom an analytic

stand pointisa perfectgas witha Prandtl number ofunityand a viscosity-temperaturerela-

tiongivenby Chapman's law since,in thiscase,the mean profilescan be expressedin terms

oftheBlasiusfunction.However, thelargeMach number behaviorof both thesteadyand un-

steadysolutionscan be significantlyalteredwhen more realisticmodels are used. The most

dramaticmodificationresultswhen the viscositylaw ischanged. IfSutherland'sviscositylaw

isused the steady flowtakeson a double-layerstructurein the limitas M -+ oo (Freeman

& Lain 1959) and BCH show thatthe asymptoticsolutionsto the Rayleigh problem proceed

ininversepowers ofM ratherthan _ as in thecase ofa Chapman-law fluid.A similar

resultisfound by Grubin _zTrigub (1992a,b)when theviscosity-temperaturerelationisgiven

by a power law. The next most significantchange occurswhen Prandtlnumbers otherthan

unityare considered.This was investigatedby Fu, Hall& B1ackaby (1990)as wellas Grubin

& Trigub (1992a,b)and both show thatthe scalingof the mean flowremains unalteredbut

thatthe powers of M in the resultingasymptoticexpansionsdepend on the Prandtlnumber.

Finally,Fu, Hall& Blackaby (1990)consideredthe effectsofgas dissociationand found that,

despite modifying the quantitative results, these effects leave the qualitative results (i.e. the

Ma_h number scalings and exponents) unaltered.

As previously stated, the fluid in the present investigation is taken to be a perfect gas

with a viscosity given by Sutherland's law. It is now further assumed that the Prandtl number

is unity. This yields a model that captures the essential large Mach number behavior needed

9



to formulate the

Accordingly, the function f in (2.3) is determined by

ff" + 2 f -- 0

subject to the boundary conditions

nonlinear problem without resulting in an excessive amount of algebra.

(2.6)

f(O) = f'(O)= O, f'(oo)= I, (2.7)

and the local mean temperature is expressed as

= Tb + (1 - Tb)f' --I-7_21M2(Tb + f')(1 - f') (2.8)T

with Tb -- 1 for an insulated wall.

Freeman _: Lam (1959) found that in the hypersonic limit the solution for f takes on a

double-layer structure consisting of a wall layer where

1

_= M_r/ (2.9)

is order one and a temperature adjustment layer where r/is order one. In the wall layer, f

expands like

f = M-½fo(_) +.... (2.10)

Substituting (2.9) and (2.10) into (2.6)-(2.8) and equating like powers of M, one obtains at

leading order

with

( :g_'
folg + 2 \v_o/ = o (2.11)

fo(0) =/U0) = 0,
b

fo=_+_+ +... as _-+_ (2.12)
3(_+ _)3

10



where

To -=7 - 1 (Tb+/_) (1-/_) (2.18)
2

b -- 72 (2.14)
(7 - 1)(Tb + 1)'

and _oo is a constant which must be determined numerically. The temperature in the wall

layer is O(M 2) so it follows from (2.5) and (2.9) that this region has a thickness of O(M_)

in the physical coordinate y.

The algebraic approach to the free-stream conditions exhibited in the wall layer becomes

exponential in the temperature adjustment layer where

1

I = 7}+ M-_oo + M-2g2(r/) +'"- (2.15)

Substituting (2.15) into (2.6)-(2.8), g_ is found to satisfy

!

f x/1- i)(Tb+
_g_' + 2 , _g21

_l--½(7--1)(Tb+l)gB+C / =0

subject to

(2.16)

b (2.17)----+... as 7--+0, g_ --+ 0 as _-_ oo.
- v4

Since the temperature here is O(1), the width of this region in terms of y is also O(1).

Therefore, in physical coordinates, the wall layer makes up the main part of the boundary

layer with the temperature adjustment layer serving as a relatively thin region through which

matching with the free stream is accomplished.

The unsteady motion is assumed to start as a linear, inviscid, spatially growing wave up-

stream in the flow. It is further supposed that the wave is monochromatic (at least initially)

and two-dimensional since, in the Ma_h number range of interest, the most rapidly growing

linear waves are planar (Mack 1984,1987). The nonlinear interaction to be considered here

11



occurs as the local Strouhal number approaches a non-inflectional neutral value $1_. Non-

linearity then affects the evolution of the unsteady flow over a streamwise scale that is long

compared to the wavelength of the disturbance but short compared to the scale on which

the mean flow develops. For the purposes of the present analysis, S can then be taken as a

constantand givenby

_oF* 2 I -
S _ - $1,_ -k a M-iS1 as M _ oo (2.18)

Uoo

where Sin has an expansion in inverse powers of M, $1 is an order-one constant and a2M½ <<

1. The behaviors of the local phase speed c and complex wavenumber a depend on both the

sign of -_1 and the size of the small parameter a. For flow over a flat plate at zero angle of

attack, the local boundary-layer thickness and consequently, the local Strouhal number both

increase monotonically with increasing downstream distance. The local Strouhal number

then approaches $1, from below so, in the streamwise region of interest, $1 is negative. The

size of a is chosen so that the linear wave has a well-defined critical layer. The analysis of

BCH shows that this condition is satisfied if

M -2 << a << M-_ (2.19)

inwhich case

and

c = 1 - gel +---, (2.20)

3

Rea = M-_50 + .-., (2.21)

11 1

Imc_ = -a"#'M_r +" ", (2.22)

as M -4 oo, where cl, a0 and _ are all order-one real constants. It should be noted that

the so-called acoustic-mode scaling, on which the analysis of Goldstein & Wundrow (1990) is

12



based,is recovered,for thepresentchoiceof viscositylaw,whena = M -2. The analysis to

follow, however, does not apply to this scaling and a separate treatment would be necessary

to capture this smaller range of frequency deviations.

The critical layer is centered about the transverse position where the phase speed of the

disturbance equals the mean flow speed. From (2.3) and (2.20), this requires f' - 1 - O(a)

which, in view of (2.15), (2.17) and (2.19), is satisfied in an overlap region between the wall

and temperature adjustment layers where

' ' (2.23)z -- azM_rl

is order one. The flow will be nonlinear in this layer provided the local instability-wave

amplitude is sufficiently large.

The unsteady flow remains predominantly linear outside the critical layer so the relevant

solutions for the streamwise and transverse components of velocity, the temperature and the

pressure expand like

15 4
u = f' + El4ekO1AteiX- + e2u2 + _aTM u3 + "" ",

- 15 4
v = -M-{eRei&_lAte Ix + e2v2 + EaTM v3 +'",

0 = T + EReOiAte iR + _202 + ea_M403 + "" ",

(2.24)

(2.2s)

(2.26)

and

1 15 4
p_ = 1 + EReH_Ate i)t + E2r2 + EaTM 7r3 .4- "" ", (2.27)

respectively, where

f( = M-]&[x -(1 -a_)t] (2.28)

13



denotesthe streamwise coordinate in a reference frame moving with the wave and _ << 1 is a

characteristic amplitude of the instability wave in the region where nonlinearity first comes

into play. This nonlinearity alters the solution over a streamwise scale inversely proportional

to the locallineargrowth rateand isaccountedfor by thefunctionAt(zl) where

11 1

zl =--aTM_x. (2.29)

The O (E2) terms in the above expansions account for higher-order corrections due to nonlin-

earity outside the critical layer while the O(_a_ M 4) terms are introduced to allow matching

with the higher harmonics generated within the critical layer.

The relationship between e, a and M is determined by requiring that the lowest-order

nonlinear terms appearing in the critical-layer vorticity equation are of the same order as

the linear convection and non-equilibrium terms. This choice ensures that the nonlinear

problem will reduce to the appropriate linear solution far upstream. The function A t (Xl) will

ultimately be determined by the nonlinear dynamics in the critical layer but matching with

the upstream linear solution requires

A t --+ ate (_+i_)xl as xl --+ -_ (2.30)

where a? is a complex constant.

The local instability-wave amplitude e is related to the amplitude of the imposed dis-

turbance through the solution of the weakly nonparallel linear stability problem. For a given

excitation amplitude, the e-a-M relation then determines the magnitude of the deviation of

the local Strouhal number from Sin in the streamwise region where nonlinearity is expected

to become important. The success of the theory for any given excitation amplitude depends

on how well (2.21) and (2.22) approximate the wavenumber in that region as determined

14



by thelocal compressibleRayleighproblem.A furtherconstrainton thetheoryis givenby

(2.19)sincethis conditionultimatelyleadsto a restrictionon thesizeof e (see (5.15) below)

and consequently, on the excitation amplitude.

The functions II1, _1, _1 and O1 of 77, xl, a and M are determined, to the required

level of approximation, by

(:'-c)'_ (f'-c)'_] -

[ ]---T M -2 T(f,--C)2 1 Ill,

YI1 = 0, (2.31)

(2.32)

fl!

T II1 + _1, (2.33)
_1 = -M-2 f,---Z-c-c T (f' - c)

and

01=(7-1) TII1+
T I

_1, (2.34)
T (ff - c)

subject to the boundary conditions

01-I.._____l= 0 at r] = 0, Ill --+ 0 as 7/--+ oo, (2.35)
On

where the complex wavenumber and phase speed are now given by

3 ( a_M 2 1 dA t_ (2.36)

c_=M-_ \_+ iAtdxl]'

and

n 2 1 dA t
c-- 1-a_-a_'M --

i&At dxl
(2.37)

respectively, and the real constants & and _ have expansions of the form

= (Xo+ a2M2_l +"" (2.38)

and

= _ +.... (2.39)

15



It should be noted that the next correction to the mean flow in the wall layer was found by

BCH to produce an O (M-½0+JT)) term in (2.38). Although the essential results for the

linear flow outside the critical layer are unaltered by this term, (2.19) is stiffened slightly by

requiring

a >> M -¼(s+v_) (2.40)

so as to keep the linear analysis as straight-forward as possible.

In the next section, approximations for II1, _t, _1 and el valid outside the critical layer

are derived. To facilitate in this derivation, a schematic of the asymptotic structure of the

flow field in the Dorodnitsyn-Howarth variable is given in figure 2.

3. Unsteady solution outside the critical layer

First, the unsteady solution in the wall layer where _ = O(1) is considered. In this

region, Hi expands like

H1 = Po + a2M2P1 + "'+ ia_ M2Pi + "'" (3.1)

where, without loss of generality, P0 is taken to be real so that iP_ is the first imaginary term.

Substituting this expansion, along with (2.9) and (2.10), into (2.8) and (2.31) and equating

like powers of a and M the following equations are obtained

£P0 = O,

and

= ( dAt)(( 1 ) ' _oT_ [1 (f_-.1)f_])T0 J 'LP, 2ira + -' P0

(3.2)

(3.3)

(3.4)

16



where

-2 5 . (3.5)0 1 0 - _0T_ 1
L -- (f_ - 1)5_ (/_ _ 1)5o_

In the frequency range of interest, the eigenfunction is concentrated in the wall layer so, in

addition to the usual wall boundary conditions

_(o)=_(o)=_(o)=o, (3.6)

the solutions to (3.2)-(3.4) must also satisfy

b2

Po _" -_-_Bo, P1 "_ 2_ls°cl'a0 Pi " -2Im i&oAI dxl ] BoCi, (3.7)

as _ -4 oo, where B0 is a nonzero constant which depends on the normalization chosen for

II1 and the constants C1 and Ci are found by the method of variation of parameters to be

1/0 c, = _o_ _1 -/;/ d_,
(3.8)

and

/0( )Ci = B'--_I oo _1 3 (g_oo2 +aoTdPd) d_" (3.9)

A numerical solution to (3.2) subject to (3.6) and (3.7) yields a countably infinite set of

eigenvalues 60 each of which corresponds to a non-inflectional neutral frequency $1_.

The solution given by (3.1) breaks down in the overlap region where z = O(1). The

appropriate expansion, in this region, is

Ha = a2M2Eo + " "+ a¼ P1 + ""+ ia_ MsPi +"" (3.10)

where E0 is a real constant and 151and iPi contain the first non-constant real and imaginary

terms respectively. It is easy to see from (2.9), (2.10), (2.12) and (2.23) that in this region

f' I 6 (3.11)
____ -- (7Z4

17



Substituting (3.10) and (3.11), along with (2.23), into (2.8) and (2.31) one finds, after integ-

rating twice with respect to z,

and

b2 2b_1 +5_z) +El,/51 = 91 -_--/z7 + (3.12)

_ = -- -_ _ E° (Im¢± + Di) -_izT + -_z3 + _._z

+2Ira i_0A* + + E/ (3.13)

where D1, El, Di, Ei and ¢+ are at most functions of zl (the latter of which can be different

1

depending on whether z <>(b/_'l)i).

The eigenfunction must be rescaled again in the temperature adjustment layer. The

solution here turns out to be

H 1 = a2M2Eo+ ...+a2M½ (FI_ + G1) --[- ...+ia_M_ (FiTI+Gi) --b ... (3.14)

where only the first terms containing non-constant real and imaginary parts are shown.

Clearly, (3.14) does not satisfy the free-stream boundary condition given by (2.35) and it is,

therefore, necessary to introduce an outer region where the variable

= M-]_ (3.15)

is order one. The solution in this region is given, to the required order of accuracy, by

II1 '_ Q exp (-c_1 - a2M2_ ¢) (3.16)

where the constant Q has an expansion in powers of a and M.

18



Thesolutionsin thevariousregionsmust,of course,bematched.The relevantresults

of this processare

Eo = 2°_1BoC1, (3.17)
Ot 0

DI ----Bo, (3.18)

Di = -Im¢-, (3.19)

- (3.20)
2C1'

and

Im _,iA? dzl
Im (¢+ - ¢-), (3.21)

where the last two equations form the leading-order approximation to the linear dispersion

relation. The phase shift ¢+-¢- appearing in (3.21) is ultimately determined by the nonlinear

dynamics inside the critical layer but matching with the upstream linear solution requires

¢+ - ¢- --+ i_r as Zl --+ -_. (3.22)

In order to formulate the nonlinear problem in the critical layer, it is necessary to have

the expansions for (I)1, _1 and el near the transverse position where the phase speed of the

disturbance equals the mean flow speed. These are obtained by substituting (3.10)-(3.13)

along with (2.23) into (2.32)-(2.34) and expanding about z = zc -- (b/51) ¼. The resulting

expressions are

34b. B0 a_ (^^._oC_ 1 dA?)B0ff_l =-aM_-_c(z- zc)-_o - M_ ;_24_zc3 + i5_oAtd--_xl _---_+''"

, b z) B_a2M2[ b(lnlz zcl_t.¢+ ¢_)]_B0q11 -- -a_-g-Zh_2(2zc - 5t-_o Jo ÷ - - -- -I-'"_Z c Olo

(3.23)

• , (3.24)
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and

4 B0
el = a'_ M 2 +'" (3.25)

Zc Or20 "'

where the real constant B has an expansion of the form

= B0 +.'-+o (a¼M 2) , (3.26)B

J0 is an order-one real constant and the dots indicate that higher-order terms in z - Zc as well

as in a and M have been omitted. It is interesting to note that the leaxiing-order temperature

fluctuation given by (3.25) is bounded in the critical layer. This result, which differs from the

singular behavior obtained by Reshotko (1960), is due to the long wavelength approximation

being employed here and is the primary reason the critical-layer dynamics turn out to be

strongly nonlinear rather than weakly nonlinear as in the compressible-shear-flow analysis of

Goldstein & Leib (1989) and Leib (1991).

4. Linear dispersion relation

Before proceeding to a formulation of the nonlinear problem, some results obtained from

the linear analysis are discussed.

The local Strouhal number of the instability wave can be expressed as

S = ac= M-}_o + a2M½&l +'",

so it follows from (2.18) that

$1,_ = M-_5_o + O a2M ,

(4.1)

(4.2)

and Sx = _x. Values of (4.2) corresponding to the first six 50 determined by solving (3.2)

subject to (3.6) and (3.7) are shown as a function of M in figure 3 for an insulated plate.
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Alsoshownare the exact values of Sin determined by solving (2.31) subject to (2.35) with

c = 1. This figure demonstrates that, even at supersonic Mach numbers, the leading-order

hypersonic solution provides a good approximation to Sin.

In addition to the $1_ curves, the exact inflectional neutral frequencies Ss_ are shown in

figure 3. These values ors correspond to c = f_(r/s) where r/, is determined by the generalized

1 ('.f" _'
= o at

inflection point criterion,

= (4.3)

As first observed by Mack (1984,1987), each Ss_ curve has a range of M for which dS/dM > 0

and the corresponding neutral mode is vortical in character. In general, the rising portions

of the curves mark the high frequency neutral point of the vorticity mode while the declining

portions mark that point for the acoustic modes (c.f. figure 1). Figure 3 suggests that

the slope of the rising portions tends to zero as the Mach number increases in contrast to

the behavior exhibited in figure 6(a) of Cowely & Hall (1990) which was computed for a

Chapman-law fluid. Smith & Brown (1990) found that along the rising segments in the latter

figure S is O(v/_-M) as M --+ oo while, for the Sutherland-law fluid considered here, BCH

show that S is O(1).

A direct comparison with Mack's (1984,1987) work is difficult since he used a combin-

ation of viscosity laws and took the Prandtl number to be 0.71. Still, the neutral curves

in figure 3 as well as the growth rate curves in figure 1 are in qualitative agreement with

his results. The assumption of a Prandtl number of unity made here appears to yield solu-

tions which reasonably approximate those computed with a more accurate value. However,

it should be noted that Grubin & Trigub (1992b) found significant changes to occur in the

Rayleigh solutions when the Prandtl number is sufficiently small.
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Having demonstrated an agreement between theexact and asymptotic propertiesofthe

neutralsolutions,the behaviorofthe amplifiedwaves isnow considered.The localcomplex

wavenumber of the lineardisturbanceisgiven by

3 / 11 2÷ ÷...)] (4.4)

where it follows from (2.30) and (3.20)-(3.22) that

3 II

_r = 2_ • 3%rA (-(_1) _- (4.5)

with

_02 12
h -- _C?. (4.6)

Equations (2.14) and (3.8) show that b and C1 are real and positive, consequently, (4.5)

requires negative values of &l to yield real values of _r. When &l is positive, the growth rate

was found by BCH to be O(aM-]) so it follows from (4.1) and (4.2) that a discontinuity

in the expansion for Ima arises as S passes through $1,,. BCH went on to show how this

discontinuity is smoothed out by the solution for the acoustic-mode scaling a = M -2. This

aspect of the problem need not be considered here however, since, as mentioned in §2, $1

(= _1) is strictly negative in the streamwise region of interest.

The variation of sr with non-inflectional neutral frequency and wall temperature is de-

termined by A. This quantity is shown as a function of Tb in figure 4 for the first two

values of &0. The curves show that, for fixed values of Tb, _1 and M, the growth rate of

the vorticity mode near the first non-inflectional neutral frequency $11 is less than that near

the second $12 which is in agreement with the results shown in figure 1. The asymptotic

solution predicts that this trend of increasing growth rates is continued for the subsequent
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Sin, yet, in figure 1, the growth rate of the vorticity mode near $13 is clearly less than that

near $12. This discrepancy is due to the fact that at M = 10 the third acoustic mode has

only just merged with the vorticity mode (c.f. figure 3). At M = 20, figure 6.2 of BCH

shows that the growth rate near 813 becomes greater than that near $12 in accordance with

the asymptotic solution. If the growth rate associated with a particular non-infiectional neut-

ral frequency is considered, figure 4 shows a decrease with decreasing Tb. This result may

seem to contradict the conclusion that wall cooling has a destabilizing effect on the Mack's

so-called higher modes (Mack 1984). However, figure 9.13 of Mack (1984) clearly shows that

while the magnitudes of the peaks in the vorticity-mode growth rate increase with decreasing

wall temperature, the growth rate in the valleys actually decreases.

Despite this qualitative agreement, quantitative agreement between the exact and asymp-

totic growth rates is not achieved until the Mach number becomes very large. Quantitative

agreement is, however, not crucial in the present investigation because the final nonlinear

problem turns out to be entirely independent of a_. In fact, the nonlinear dynamics depend

only on the a-M scaling of the growth rate. To determine the accuracy of this scaling, the

exact vorticity-mode growth rate is computed as a function of M for a fixed deviation from

a non-inflectional neutral frequency, that is for

s = (i- (4.7)

where 0 < ), << 1 is a constant. The results of this computation are presented in figure 5

for the first two values of Sly. The asymptote predicted by the hypersonic solution is also

shown. This is determined by noting that (4.1), (4.2) and (4.7) imply

(_1 "" -a-2M-2)_°70 (4.8)
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which,from (2.19)and(2.40),requires

M-½(I+'4?) << A << M-_. (4.9)

Substituting (4.8) into (4.5) and the result into (4.4) gives

a, --- Ima = O (U-_ A_) (4.10)

and, since A is held fixed along the computed curves,

M dt_i 9

c_--_-d--M "_ -4" (4.11)

Although the comparisons shown in figure 5 are fairly good, it is felt that improvements could

be obtained by adding higher-order corrections to (4.10). However, such terms do not enter

into the critical-layer anaJysis and so are not pursued here.

5. The criticallayer

Equation (3.24) shows that the solution in the overlap region becomes singular where

z = zc. The governing equations must therefore be rescaled to obtain a bounded solution in

this region. The thickness of the small-growth-rate critical layer is of the order of the mean

velocity times the growth rate divided by the mean velocity gradient times the real part of

the wavenumber so it follows from (2.36) and (3.11) that the appropriately scaled transverse

Z -_ a-¼ M-2(z - zc).

coordinate in this region is

(5.1)

Equations (2.24)-(2.27), (3.10), (3.11), (3.23)-(3.25), (A1)-(A4), (A13) and (A 15)-

(A 17) along with (5.1) suggest that the flow in this region should expand like

a_+a_M24bz_ a}M41Obz2"-Td- ,_ b Bo.., ., if,?2 = 1- - -a4E----_rteA e
z c zc 9zc 5_o
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+ bounded Z-independent terms + a2M26_l +-.., (5.2)

[(,bz dA'v=a_M2eRe kz_ +_Zc 3_0¢1 + i_oAt dZl

-a-_M-2E_b-_-B°ReAteiRvzc&5 ] B°iA?eiR]ao J + "" "'

36 " 4144 1 2 -
0 = aM2--r - aTM ---v-Z + craM e81 +

° l m _

zt z_

(5.3)

(5.4)

and

1 --2 -

p_ = 1 - a2M2eC[ BoReAteiX_ +"'.
GO

(5.5)

This solution will match the 'outer' solution in the overlap region provided

vq_l b BOReAteiR (5.6)
0--Z- "-+ 9z_ &_

_1 --_ -_ B°ReAtel)_ (5.7)

zc &_

as Z -_ +o0, and

I/2_/+_ (_'_ 1 b BOReAfei_e_if_dZd._ - 27C_Bo(¢+_¢-)At" (5.8)
-_ Jo J-oo \ OZ 9z2c &-_ / b &o

The functions ul and 01 of .Y, Z and xl are determined by the vorticity and energy

equations which can be written as

"yp

( oo ¢_M200_]Op _.g__+OZ Ozl] ] '
(5.9)

and

respectively, where

7 - 1 0--_f)',Do
7 P

D-ovM _-_ + _(_- 1+ °e) + ¢-_ 0--2'

(5.1o)

(5._1)
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(_Or ._zl)_a__M___ _w =- M-_ c_-_ + a_ M 2 3 3

and it has been assumed that

R >> a-_ M-_

I Ou

T OZ' (5.12)

(5.13)

so, to the required level of approximation, terms accounting for viscous diffusion effects as

well as those arising from corrections to the mean flow due to the growth of the boundary

layer can be neglected.

The relationship between the amplitude scale e, the phase speed deviation a and the

Mach number M is determined from (5.9)-(5.11) by requiring that the lowest-order velocity

jump produced by the nonlinear terms is of the same order as the velocity jump due to linear

effects, i.e. O(a2M2e). A little experimentation shows that nonlinear effects will influence fil

if

5

= a'_M 2 (5.14)

which, when combined with (2.19) and (2.40), requires

M-] (9+Svq) << _ << M-_.

The equations governing ux and Ol are then

and

(5.15)

where

,_ \(a_ZlOZ 4bZ'_z_J = _'_BoRe (iAte i)t) _0 (_x _ 144Z)z--_- (5.16)

( 144z)# °_- z[ ]=° (5.17)

0 ('4__.bZ b Bo ) 0 z_ Bo,-. r{4__bZOzl + 6to \ zS¢ 9zc 6_ Reatei_:-- _ O-X + 3--6"_o_e L\ zcs

) -324_ 2 1 dA t b Bo iAl.ei X 0
+_zc 3 (_°_1 + i&oAt dxx 9zc &o2 ReAtei)? OZ
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is the limiting form of the total derivative in the critical layer.

The presence of A t in the coefficients of both the 0 2 and Oz terms in (5.18) as well as in

the right-hand-side of (5.16) shows that nonlinearity enters the critical layer dynamics through

both streamwise and transverse convection terms as well as through vorticity production due

to pressure-density variations. The nonlinear streamwise convection terms turn out to be

passive in that they do not affect the instability-wave growth rate (although they do strongly

affect the flow field in the critical layer). These terms can be eliminated from (5.18) by simply

introducing a strained transverse coordinate,

4
2 ----Z zg B__OReAtei X (5.19)

36 ,_

so that 7) becomes

7) 0 4b 2 0 9zc_ _ ,., Re (iAte i'_) 0 (5.20)
- o11 + _,_o _ + -g-_ocl-o _-5"

The parameters characterizing the 'outer' linear flow can be removed from the critical-

layer equations by introducing the following normalized variables,

(5.2_)

2 z_2 (0_1 (5.22)
12 -- 3 s b&o \'0-'Z

2 4 Z10
B_ A ?ei(Xo-'_:l),

A -- 3s &_ u

b Bo )9z_2 _o2 ReA?eiX ,

4__B__oReA?ei)_ _
z_ a_ / '

3s b

_" ----" 2 Zc11 (_20xl -- :_0,

11(H - _ -173 zc 01 (5.23)6o

5.24)

X = f( - Xo + _izx, 5.25)

and

236(5.)zc 2+ zc x, (5.26)
Y --- 3S6o _oo "
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Equations(5.16),(5.17),(5.8)and(3.21)thenbecome

( )(0. ):DQ=Re iAe iX 4_--3 ,

DH= -Re (iAeiX),

'///)2- Qe-iXdYdX = -3(¢ + - ¢-)A,
7r

and

respectively, where

( 1 dA_
Im(¢ + - ¢-) -----Im \_-_-_],

and

(2.30) becomes

0 0 (iAeiX) 0:D = _-_ + Y_--_ - Re OY"

If the, as yet, unspecified real constants Xo and xo are chosen to be

X0 =-arg (-Boat),

(5.27)

(s.28)

(5.29)

(5.30)

(5.31)

(5.32)

1xo = --_r In ---_oJB0a*l , (5.33)

A --+ e_ as _ --_ -oo. (5.34)

From this condition along with (3.22) and (5.27)-(5.29), one can show that the solution for

A remains real for all values of _. Equations (5.29) and (5.30) can then be combined to give

1J02_" J_l'_ . _i3dA- oo Qe-'XdYdX = d_:"
(5.35)

It should be noted that equations (5.27) and (5.28) are the same as equations (6.29) and

(6.30) of Goldstein & Wundrow (1990) but with r = 4. The difference in the velocity jump
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conditiongivenby (5.35)andthat givenbyequation(6.31)of Goldstein& Wundrow(1990)

with r - 4 is dueto adifferencein normalizationswhichcanbeeliminatedbyreplacingtheir

P with (1- r)F in equations (6.22)-(6.27) of the latter analysis.

Equations (5.27), (5.28) and (5.35) must be solved numerically subject to matching

with both the 'outer' flow in the overlap region and the linear flow upstream. The former

condition requires that _ and H be strictly periodic in X and satisfy the homogeneous

fl, H -+ 0 as Y -+ -boo, (5.36)

boundary conditions

while the latter, in addition to (5.34), requires

and

__4 _3Re (_1 AeiX_
\Y - i_ /

(5.37)

H -+ -Re (1AeiX'_ (5.38)
\Y-i_ /'

as 2 -+ -oo. The technique used to solve the final critical-layer problem parallels that given

in Goldstein _: Wundrow (1990) and the reader is referred there for a detailed discussion of

the method.

6. Numerical results and discussion

Goldstein &: Wundrow (1990) considered the spatial development of an initially linear

inviscid instability wave on a hypersonic boundary layer. Their analysis was done for a fluid

satisfying Chapman's viscosity law using the a_:oustic-mode scaling which, in the present

analysis, corresponds to a = M -2. The evolution equations they derived depend on a single

free parameter, r, which is defined as the ratio of the logarithmic derivative of the mean
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temperature to the logarithmic derivative of the mean vorticity evaluated at the critical level.

For the amplified acoustic modes, r varies between 0 at the non-inflectional neutral frequency

Sin and 1 at the inflectional neutral frequency Ssn. For the amplified vorticity mode, r must

be greater than some minimum value which is determined by the asymptotic solution to the

Rayleigh problem and is itself greater than 1. This condition reflects the fact that the phase

speeds of the vorticity-mode solutions to which the nonlinear theory applies are less than

those of the amplified acoustic modes and so the critical layer is located closer to the wall

where the mean temperature variations out weigh the mean vorticity variations.

Goldstein & Wundrow (1990) only presented numerical results for the case when the

disturbance is an acoustic mode, i.e. for r _ 1. These results show that nonlinear vorticity

generation in the critical layer can cause a super-exponential growth of the instability wave but

that this subsides once the wave amplitude becomes sufficiently large. Transverse convection

effects then come into play to produce a nonlinear roll-up of the flow within the critical layer

and this, in turn, drives the growth rate toward zero. The final asymptotic state of the

critical layer, for r _ 1, is left undetermined but the authors indicate that viscous effects will

eventually become important due to the continually decreasing scales generated by the roll-

up. The incompressible-shear-flow analysis of Goldstein & Hultgren (1988) along with the

investigation of the upper-branch stability of compressible boundary layers due to Gajjar

Cole (1989) suggest that viscous effects will ultimately produce a quasi-equilibrium critical-

layer structure and a slow algebraic growth of the instability wave.

Of primary interest, in the present investigation, is how the numerical results given in

Goldstein & Wundrow (1990) are altered when r -- 4, i.e. for the case of more practical

importance when the disturbance is a vorticity mode. In figure 6, the scaled instability-
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wave amplitude A determined by (5.27), (5.28) and (5.35) is shown as a function of the long

streamwise variable 5. The corresponding instability-wave growth rate is presented in figure

7. These curves show that the wave grows linearly until its amplitude becomes large enough

for nonlinear effects to become important. The growth rate then decreases and soon becomes

negative. This results in a rapid reduction in the wave amplitude which is in contrast to the

initial nonlinear amplification observed by Goldstein & Wundrow (1990). Both behaviors are

the consequence of vorticity generation due to compressible effects. The difference presum-

ably results because the nonlinear vorticity-generation (or Bjerknes) term appearing in the

final critical-layer vorticity equation changes sign relative to the linear inhomogeneous term

when r is greater than 1 (see equation (6.29) of Goldstein &: Wundrow (1990)). The results

presented in figures 5 and 6 correspond more closely to the special case found in the analysis

of the weakly-nonlinear critical layer associated with a three-dimensional disturbance on a

compressible shear layer done by Goldstein & Leib (1989) and Leib (1991). For this special

case, the scaled amplitude function is purely real and figures 4 and 7 of the former analysis

and figure 1 of the latter show that nonlinearity produces a rapid reduction in both the growth

rate and wave amplitude.

Although the nonlinear terms in the critical-layer problem become less important as the

instability-wave amplitude continues to decrease, the solution does not return to its upstream

linear state. This is because the effects of the nonlinear redistribution of vorticity, which takes

place near the peak in the amplitude, persist downstream in such a way that the growth rate

remains negative. This redistribution is demonstrated in figure 8 where constant-vorticity

lines in the (X, _') plane are shown at various values of _. As in Goldsteia & Wundrow (1990),

localized regions of high vorticity are produced by the nonlinear coupling of the vorticity and
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energy equations (c.f. figure 8(b)) while the more usual roll-up of the contours is the result of

transverse convection effects (c.f. figure 8(c)). Superposed on this behavior is a straining of

the contours due to the nonlinear streamwise convection term which has been re-introduced

by showing the vorticityas a functionof themore physicaltransversecoordinate,

zc = y_ ReAe ix. (6.1)

The straining is most pronounced in figure 8(c) where A is the largest. The important point

to note is that, once the redistribution takes place, the vorticity field remains rolled-up even

after the instability-wave amplitude has become quite small (c.f. figure 8(d)).

The results in figures 6 and 7 suggest that the quasi-equilibrium critical-layer structure

proposed for the downstream behavior of the acoustic modes will not apply to the vorticity

mode considered here. In fact, the numerical solution to the critical-layer problem predicts

that the scaled amplitude of the vorticity mode goes to zero at a finite downstream distance.

Before this point is reached, however, the asymptotic formulation outside the critical layer

breaks down. To show this, the amplitudes of the higher harmonics generated within the

critical layer must be determined. The equation governing these amplitudes is obtained by

equating the expression for the velocity jump across the critical layer given by the 'outer'

solution in the overlap region, (B 15), with that given by the 'inner' critical-layer solution and

is expressed as

2 4 zc_17 eim(Xo__xl)_(3rn)a(3m) = - - _eimXdYdX (6.2)
7r oo

where m - 2, 3,.... The amplitudes of the first few harmonics are shown in figure 9. It is

clear that, as the amplitude of the fundamental goes to zero, the amplitudes of the higher

harmonics do not. Consequently, the expansions (2.24)-(2.27) eventually become disordered.
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A solutionfor thenextstage of evolution is not worked out here because, once the amplitude

of the fundamental becomes sufficiently small, other disturbances not accounted for by the

present theory but always present in practice would then, most likely, be dominant.

Finally, viscous effects could be incorporated into the critical-layer analysis by loosening

the restriction in (5.13). Some care must be taken in doing this, however, since it is possible

that an interaction between the mean flow and the leading-edge shock of the sort considered

by Bush & Cross (1967) could take place for certain values of a. In any event, it is felt

that, although viscosity will tend to reduce the gradients in the vorticity and temperature

fields, it will not significantly alter the behavior of the instability-wave amplitude because the

nonlinear interaction that drives the amplitude to zero occurs over such a short distance (on

the _ scale) that viscous effects would not have time to assert themselves.

Appendix A. Nonlinear terms in the overlap region

The lowest-order approximations (in a, M and z-zc) of the O (_2) terms in the expansions

(2.24)-(2.27) are determined in this appendix. Since these terms are generated by nonlinear

interactions that are quadratic in the fundamental mode, they can be expressed as

u2 + _'1Ul -= _I/_°) -k Rek_(2)e i2_ , (A 1)

3 (_0) _)ei2)_) (A2)v2 + fly1 ------M-_25 _ + Rei_

_2 "_- 7r1_1 ----- _}_0) + ReO_2)ei2X, (A 3)

_2 - l'I? ) + ReH_ 2)ei2)_ , (A 4)

where ul, vl, _1 and rl denote the coefficients of the O(e) terms in (2.24)-(2.27) respectively.
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The functions H(22), _2), _p(2)and O_2) of r/, zl, a and M are determined to the required

level of approximation by

where

{ o gI 1}L2H_ 2)=M 2 a_TF(22)_(f'_c) 2_ (f'-c) 2j '

1 (M_2Onl ai ))= 4a2(fi_c)\ _ + ,

0_2)_ 1

Z rT' _,(2)
e__)=/, L_-_ + (-_- _)(/' - c)Tn(__) _H(_)]-_j,

(A5)

(A6)

(A 7)

(A8)

L,_=(/'-c) 2_ (f'-c) _O0 _ , (Ag)

[ 1 0 ((I)llii1)"q- U__2Oll.i, ] At2 (i 10)

o, on,]G?)--_ 2a2",_1 TOrI(¢2)+M-2 T 0rijA t2, (All)

(¢,e_) - ('r - 1) (f' - c) n, (o_ + Tn_)
1 0

H_ 2) ------ 2_101 T Or/

10
-(7 - I)T [2*lIIa TO_I(_IH,)I}At2. (A12)

Similar equations can be obtained for l-I? ), ¢?), _(2°) and O(2°) however, these terms due not

contribute to the leading-order behavior of 7r2, v2, Us or 02 near the critical layer and so can

be ignored.

For the purposes of the present analysis, it is only necessary to consider the solutions in

the overlap region where z = O(1). In this region, YI_2) expands like

(A13)
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whereE (2) is at most a function of zl and iO_2) is the first z-dependent term. Substituting

(A 13) along with (2.23), (3.10), (3.11) and (3.23)-(3.25)into (A 5) one finds, after integrating

once with respect to z,

aP_ 2) 4 _2_2, z [z 2 --}-Oz -_C_oC,t - zc) O(z- z¢)] {BOA t'_2-- / (A

to lowest order in a and M as z -+ z_. It now follows from (A6)-(A8) that

k_2)=a-½[Jx+O(z-z_)] A* ,

(A

(A 16)

and

as z --+ zc, where J1 is an order-one constant.

Appendix B. Higher harmonics in the overlap region

In this appendix, the leading-order approximation to the velocity jump across the critical

15 4
layer corresponding to the O(a_-M _) harmonics in (2.24)-(2.27) is determined. Since these

harmonics are generated by nonlinear interactions in the critical layer, they take the form

u3 = E tte....w3(m)a3"(m)-imXe, (B 1)
m=2

oo

v3 = -M-_ y_ Reim_(3_)a(_)e i'_, (B 2)
m=2

oo

03 _ _A_('_);'(_)=i'_2--" J'_"_""3 ""3 "" '

'm=2

(B 3)

and

oo

7r3 = E ReII(3_)a(3m)eim)c'
m=2

(B4)

35



where the scaledharmonic amplitudes_-(3"_)(xI)are determined by the nonlinearflow within

the criticallayerand the functions_(3'_),_(3m), e ('_)and H('_)of _/,xl, a and M are

determined by the followinglinearequationsoutsidethe criticallayer,

L n(")"--3 ----0, (B5)

¢(3" ) M -2 0 l_i(,,),

ql(") _-- f,l /_f"&(,_) ),- c \_-=3 - M-2TH(3'_)

(B6)

(B7)

and

1 c rT' (") ]e(3"> = i,- L_-¢3 + ('_ - 1) (/'- c) Tn_ ") . (BS)

These functions satisfy the usual homogenous boundary conditions at the wall and decay

exponentially as _] -4 co. However, they are, in general, discontinuous across the critical

layer.

It is only necessary to consider the solutions in the overlap region where z = O(1).

In order for the solutions in this region to match with those in the wall and temperature

adjustment layers, l'I (") must expand like

for z < zc, and

II(m) = 1 +.-.+a-¼M-2P_ ")+ +--., (Sl0)

for z > zc, where P_")+ is the first z-dependent term. Equations (B 9) and (B 10) imply that

the pressure fluctuations are constant across the critical layer to O(a_M4e) (a fact that can

be deduced from the transverse component of the momentum equation in the critical layer),

but that the pressure gradient is discontinuous at O(a'_M2_). Substituting (B 10) along with
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(2.23),(3.10),(3.11)and(3.23)-(3.25)into (B 5)onefinds,afterintegratingoncewith respect

to Z,

v9 _(,_)+ 16= -m_o--:-_(z - zc) 2 +""
_Z 1 Zc

as z -+ zc from above. It now follows from (B 6)-(B 8) that

(Bli)

_(3m) --a-IM-½ 1 4
_r/_0Cl Zc

(z - z_)+---, (B 12)

_(m) = a-¼ M -2 i b (B 13)
rn_0_ 9zc + "'"

and

7 1 4 +'--, (B 14)
e_') = -"-_'m_0e_ z=

as z --+ zc from above. It can be shown that the solution for _(m) is o(a-¼M -2) as z --_ zc

from below, therefore the leading-order approximation to the velocity jump across the critical

layer associated with the higher harmonics is given as

oo Re 1 b -_(m)^im._
AU3-- U3(Z +) -- U3(Z:) = a-¼ M -2 __, m_o_ 9zc a3 _ +'" ""

rn_2

(B 15)
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FIGURE 1. Growth rate vs. frequency for an insulated plate at M = 10.
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